skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shi, Shu-Su"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, the rapidity-odd directed flow (v1) of produced hadrons (K−, ϕ, p¯, Λ¯, Ξ¯+, Ω−, and Ω¯+) has been studied. Several combinations of these produced hadrons, with very small mass differences but differences in the net electric charge (Δq) and net strangeness (ΔS) on the two sides, have been considered. A difference in v1 between the two sides of these combinations (Δv1) has been proposed as a consequence of the electromagnetic field produced in relativistic heavy-ion collisions, especially if Δv1 increases with Δq. Our study is performed to understand the effect of the coalescence sum rule (CSR) on Δv1. We point out that the CSR leads to Δv1=cqΔq+cSΔS, where the coefficients cq and cS reflect the Δv1 of produced quarks. Equivalently, one can write Δv1=cqΔq+cBΔB, involving the difference in the net baryon number ΔB, where the CSR gives cB=−3cS. We then propose two methods to extract the coefficients for the Δq and ΔS dependences of Δv1. 
    more » « less